
C Unions

A union is a user-defined type similar to structs in C except for one key difference.

Structures allocate enough space to store all their members, whereas unions can

only hold one member value at a time.

How to define a union?

We use the union keyword to define unions. Here's an example:

union car

{

 char name[50];

 int price;

};

The above code defines a derived type union car.

Create union variables

When a union is defined, it creates a user-defined type. However, no memory is

allocated. To allocate memory for a given union type and work with it, we need to

create variables.

Here's how we create union variables.

union car

{

 char name[50];

 int price;

};

https://www.programiz.com/c-programming/c-structures

int main()

{

 union car car1, car2, *car3;

 return 0;

}

Another way of creating union variables is:

union car

{

 char name[50];

 int price;

} car1, car2, *car3;

In both cases, union variables car1, car2, and a union pointer car3 of union

car type are created.

Access members of a union

We use the . operator to access members of a union. And to access pointer

variables, we use the -> operator.

In the above example,

 To access price for car1, car1.price is used.

 To access price using car3, either (*car3).price or car3->price can be used.

Difference between unions and structures

Let's take an example to demonstrate the difference between unions and structures:

#include <stdio.h>

union unionJob

{

 //defining a union

 char name[32];

 float salary;

 int workerNo;

} uJob;

struct structJob

{

 char name[32];

 float salary;

 int workerNo;

} sJob;

int main()

{

 printf("size of union = %d bytes", sizeof(uJob));

 printf("\nsize of structure = %d bytes", sizeof(sJob));

 return 0;

}

Output

size of union = 32

size of structure = 40

Why this difference in the size of union and structure variables?

Here, the size of sJob is 40 bytes because

 the size of name[32] is 32 bytes

 the size of salary is 4 bytes

 the size of workerNo is 4 bytes

However, the size of uJob is 32 bytes. It's because the size of a union variable will

always be the size of its largest element. In the above example, the size of its

largest element, (name[32]), is 32 bytes.

With a union, all members share the same memory.

Example: Accessing Union Members

#include <stdio.h>

union Job {

 float salary;

 int workerNo;

} j;

int main() {

 j.salary = 12.3;

 // when j.workerNo is assigned a value,

 // j.salary will no longer hold 12.3

 j.workerNo = 100;

 printf("Salary = %.1f\n", j.salary);

 printf("Number of workers = %d", j.workerNo);

 return 0;

}

Output

Salary = 0.0

Number of workers = 100

	C Unions
	How to define a union?
	Create union variables
	Access members of a union

	Difference between unions and structures
	Example: Accessing Union Members

